The piping solution provider: www.pdxsteel.com

How can flanges be classified based on face finish?

Flanges are classified based on face finish as:

Flange face finish

The ASME b16.5 code requires that the flange face (raised face and flat face) has a specific roughness to ensure that this surface be compatible with the gasket and provide a high quality seal.

A serrated finish, either concentric or spiral, is required with 30 to 55 grooves per inch and a resultant roughness between 125 and 500 micro inches. This allows for various grades of surface finish to be made available by flange manufactures for the gasket contact surface of metal flanges.

The picture shows a serrated finish on a Raised Face.

Flange face finish

The most used Surfaces

STOCK FINISH
The most widely used of any flange surface finish, because practically, is suitable for all ordinary service conditions. Under compression, the soft face from a gasket will embed into this finish, which helps create a seal, and a high level of friction is generated between the mating surfaces.

The finish for these flanges is generated by a 1.6 mm radius round-nosed tool at a feed rate of 0.8 mm per revolution up to 12 inch. For sizes 14 inch and larger, the finish is made with 3.2 mm round-nosed tool at a feed of 1.2 mm per revolution.

SPIRAL SERRATED
This is also a continuous or phonographic spiral groove, but it differs from the stock finish in that the groove typically is generated using a 90-° tool which creates a “V” geometry with 45° angled serration.

CONCENTRIC SERRATED
As the name suggests, this finish is comprised of concentric grooves. A 90° tool is used and the serrations are spaced evenly across the face.

SMOOTH FINISH
This finish shows no visually apparent tool markings. These finishes are typically utilized for gaskets with metal facings such as double jacketed, flat steel and corrugated metal. The smooth surfaces mate to create a seal and depend on the flatness of the opposing faces to effect a seal. This is typically achieved by having the gasket contact surface formed by a continuous (sometimes called phonographic) spiral groove generated by a 0.8 mm radius round-nosed tool at a feed rate of 0.3 mm per revolution with a depth of 0.05 mm. This will result in a roughness between Ra 3.2 and 6.3 micrometers (125 – 250 micro inch).

PREV
NEXT

RELATED POSTS

Leave a Reply

*

*

Inquery now

SUBSCRIBE TO OUR NEWSLETTER

FOLLOW US

YouTube
العربية简体中文繁體中文NederlandsEnglishFrançaisDeutschItaliano日本語한국어LatinPortuguêsРусскийEspañolTürkçe

QQ
Email me
Mail to us